Капсаицин (capsaicin) в лечении боли. Литература


Как победить боль? Капсаицин в клинической практике

  1. O’Connor A., Dworkin R. Treatment of neuropathic pain: An overview of recent guidelines. Am J Med 2009; 122: 10 Suppl: 22-32.
  2. Woolf C., Mannion R. Neuropathic pain: Aetiology, symptoms, mechanisms, and management. Lancet 1999; 353: 9168:1959-1964.
  3. Taylor J., Brauer S., Espir M. Long-term treatment of trigeminal neuralgia with carbamazepine. Postgrad Med J 1981; 57: 663: 16-18.
  4. Noto C., Pappagallo M., Szallasi A. NGX-4010, a high-concentration capsaicin dermal patch for lasting relief of peripheral neuropathic pain. Curr Opin Investig Drugs 2009; 10: 7: 702-710.
  5. Paice J., Ferrans C., Lashley F., Shott S., Vizgirda V., Pitrak D. Topical capsaicin in the management of HIV-associated peripheral neuropathy. J Pain Symptom Manage 2000; 19: l: 45-52.
  6. Mou J., Paillard F., Turnbull В., Trudeau J., Stoker M., Katz N. Efficacy of Qutenza (capsaicin) 8% patch for neuropathic pain: a meta-analysis of the Qutenza Clinical Trials Database. Pain 2013; 154: 9: 1632-1639.
  7. Bouhassira D., Lanteri-Minet M., Attal N., Laurent В., Touboul C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 2008; 136: 380-387.
  8. Torrance N., Smith В., Bennett M., Lee A. The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. J Pain 2006; 7: 281-289.
  9. Treede R., Jensen Т., Campbell J. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 2008; 70: 1630-1635.
  10. Clinical studies: Phase I studies — study CI 15 (normal volunteers) (part 2). 2009. Astellas Pharma Europe Ltd, Staines, Middlesex, UK. [036].
  11. Baron R., Binder A., Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010; 9: 8: 807-819.
  12. Calvo M., Dawes J., Bennett D. The role of the immune system in the generation of neuropathic pain. Lancet Neurol 2012; 11: 7: 629-642.
  13. Bennett D., Woods C. Painful and painless channelopathies. Lancet Neurol 2014; 13: 6: 587-599.
  14. Caterina M., Schumacher M., Tominaga M., Rosen Т., Levine J., Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997; 389: 816-824.
  15. Tominaga M., Caterina M., Malmberg A. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998; 21: 531-543.
  16. McMahon S., Koltzenburg M. The changing role of primary afferent neurones in pain. Pain 1990; 43: 269-272.
  17. Cummins Т., Howe J., Waxman S. Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PNl sodium channel. J Neurosci 1998; 18: 9607-9619.
  18. Blair N., Bean B. Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 2002; 22: 10277-10290.
  19. Renganathan M., Cummins Т., Waxman S. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 2001; 86: 629-640.
  20. Herzog R., Cummins Т., Waxman S. Persistent TTX-resistant Na+ current aff ects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 2001; 86: 1351-1364.
  21. Priest В., Murphy В., Lindia J., Diaz C., Abbadie C., Ritter A., Liberator P., Iyer L., Kash S., Kohler M., Kaczorowski G., Maclntyre D., Martin W. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci USA 2005; 102: 9382-9387.
  22. Ostman J., Nassar M., Wood J., Baker M. GTP up-regulated persistent Na+ current and enhanced nociceptor excitability require NaV1.9. J Physiol 2008; 586: 1077-1087.
  23. Hao J., Padilla F., Dandonneau M. Kvl.l channels act as mechanical brake in the senses of touch and pain. Neuron 2013; 77: 899-914.
  24. Amir R., Kocsis J., Devor M. Multiple interacting sites of ectopic spike electrogenesis in primary sensory neurons. J Neurosci 2005; 25: 2576-2585.
  25. Bostock H., Campero M., Serra J., Ochoa J. Temperature-dependent double spikes in C-nociceptors of neuropathic pain patients. Brain 2005; 128: 2154-2163.
  26. Fischer M., Rech P. Sensitization to heat through G-proteincoupled receptor pathways in the isolated sciatic mouse nerve. Eur J Neurosci 2007; 25: 3570-3575.
  27. Kim H., Park C., Cho I., Jung S., Kim J., Oh S. Differential changes in TRPV1 expression after trigeminal sensory nerve injury. J Pain 2008; 9: 280-288.
  28. Szallasi A., Blumberg P. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 1999; 51: 159-212.
  29. Lai J., Hunter J., Porreca F. The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol 2003; 13: 291-297.
  30. Black J., Nikolajsen L., Kroner K., Jensen Т., Waxman S. Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann Neurol 2008; 64: 644-653.
  31. Siqueira S., Alves В., Malpartida H., Teixeira M., Siqueira J. Abnormal expression of voltage-gated sodium channels Navl.7, Navl.3 and Navl.8 in trigeminal neuralgia. Neuroscience 2009; 164: 573-577.
  32. Biggs J., Yates J., Loescher A., Clayton N., Robinson P., Boissonade F. Effect of SB-750364, a specific TRPV1 receptor antagonist, on injury-induced ectopic discharge in the lingual nerve. Neurosci Lett 2008; 443: 41-45.
  33. Spicarova D., Palecek J. The role of spinal cord vanilloid (TRPV1) receptors in pain modulation. Physiol Res 2008; 57: Suppl 3: 69-77.
  34. Kanai Y., Нага Т., Imai A. Sakakibara. Differential involvement of TRPV1 receptors at the central and peripheral nerves in CFA-induced mechanical and thermal hyperalgesia. J Pharm Pharmacol 2007; 59: 733-738.
  35. Jordt S., Tominaga M., Julius D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci USA 2000; 97: 8134-8139.
  36. Huang J., Zhang X., McNaughton P. Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol 2006; 4: 197-206.
  37. O’Neill J., Drock C., Olesen A., Andresen Т., Nilsson M., Dickenson A. Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 2012; 64: 4: 939-971.
  38. Moriyama Т., Higashi Т., Togashi K., Iida Т., Segi E., Sugimoto Y., Tominaga Т., Narumiya S., Tominaga M. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 2005; 1: 3-8.
  39. Smith J., Davis C., Burgess G. Prostaglandin E2-induced sensitization of bradykinin-evoked responses in rat dorsal root ganglion neurons is mediated by cAMP-dependent protein kinase A. Eur J Neurosci 2000; 12: 3250-3258.
  40. Vellani V., Zachrisson O., McNaughton P. Functional bradykinin Bl receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF. J Physiol 2004; 560: 391-401.
  41. Huang J., Zhang X., McNaughton P. Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol 2006; 4: 197-206.
  42. Por E., Samelson В., Belugin S., Akopian A., Scott J., Jeske N. PP2B/calcineurin-mediated desensitization of TRPV1 does not require AKAP150. Biochem J 2010; 432: 549-556.
  43. Mohapatra D., Nau C. Regulation of Ca2-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 2005; 280: 13424-13432.
  44. Jung J., Shin J., Lee S., Hwang S., Koo J., Cho H., Oh U. Phosphorylation of vanilloid receptor 1 by Ca2/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 2004; 279: 7048-7054.
  45. Nicol G., Lopshire J., Pafford C. Tumor necrosis factor enhances the capsaicin sensitivity of rat sensory neurons. J Neurosci 1997; 17: 975-982.
  46. Obreja O., Rathee P., Lips K., Distler C., Kress M. IL-1 P potentiates heat-activated currents in rat sensory neurons: involvement of IL-1RI, tyrosine kinase, and protein kinase C. FASEB J 2002; 16: 1497-503.
  47. Kim C., Moa’em-Taylor G. Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Res 2011; 1405: 95-108.
  48. Morin N., Owolabi S., Harty M. Neutrophils invade lumbar dorsal root ganglia after chronic constriction injury of the sciatic nerve. J Neuroimmunol 2007; 184: 164-171.
  49. Zhang X., Chen Y., Wang C., Huang L. Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci USA 2007; 104: 9864-9869.
  50. George A., Buehl A., Sommer C. Wallerian degeneration after crush injury of rat sciatic nerve increases endo- and epineurial tumor necrosis factor-alpha protein. Neurosci Lett 2004; 372: 215-219.
  51. Empl M., Renaud S., Erne В., Fuhr P., Straube A., Schaeren-Wiemers N., Steck A. TNF-a expression in painful and nonpainful neuropathies. Neurology 2001; 56: 1371-1377.
  52. Schumacher M. Transient receptor potential channels in pain and inflammation: therapeutic opportunities. Pain Pract 2010; 10: 185-200.
  53. Wagner R., Myers R. Endoneurial injection of TNF-a produces neuropathic pain behaviors. Neuroreport 1996; 7: 2897-2901.
  54. Schafers M., Lee D., Brors D., Yaksh Т., Sorkin L. Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-a after spinal nerve ligation. J Neurosci 2003; 23: 3028-3038.
  55. Sommer C., Schmidt C., George A. Hyperalgesia in experimental neuropathy is dependent on the TNF receptor 1. Exp Neurol 1998; 151: 138-142.
  56. McMahon S., Lewin G., Bloom S. The consequences of long-term topical capsaicin application in the rat. Pain 1991; 44: 301-310.
  57. Premkumar L., Sikand P. TRPV1: A target for next generation analgesics. Curr Neuropharmacol 2008; 6: 2: 151-163.
  58. Campbell J., Meyer R. Mechanisms of neuropathic pain. Neuron 2006; 52: l: 77-92.
  59. Diogenes A., Ferraz C., Akopian A., Henry M., Hargreaves K. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res 2011; 90: 759-764.
  60. Price D., Long S., Wilsey В., Rafii A. Analysis of peak magnitude and duration of analgesia produced by local anesthetics injected into sympathetic ganglia of complex regional syndrome patients. Clin J Pain 1998; 14: 216-226.
  61. Sowa N., Street S., Vihko P., Zylka M. Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-bisphosphate. J Neurosci 2010; 30: 10282-10293.
  62. Goswami C. Structural and functional regulation of growth cone, filopodia and synaptic sites by TRPV1. Commun Integr Biol 2010; 3: 614-618.
  63. Giordano C., Cristino L., Luongo L., Siniscalco D., Petrosino S., Piscitelli F. TRPV1-dependent and -independent alterations in the limbic cortex of neuropathic mice: impact on glial caspases and pain perception. Cerebral Cortex 2012; 22: 2495-2518.
  64. Doly S., Fischer J., Salio C., Conrath M. The vanilloid receptor-1 is expressed in rat spinal dorsal horn astrocytes. Neurosci Lett 2004; 357: 123-126.
  65. Stander S., Moormann C., Schumacher M., Buddenkotte J., Artuc M., Shpacovitch V., Brzoska Т., Lippert U., Henz В., Luger T. Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 2004; 13: 129-139.
  66. Seki N., Shirasaki H., Kikuchi M., Himi T. Capsaicin induces the production of IL-6 in human upper respiratory epithelial cells. Life Sci 2007; 80: 1592-1597.
  67. Lee Y., Kim Y., Chung J. Increased expression of TRPV1 channel in intrinsically aged and photoaged human skin in vivo. Exp Dermatol 2009; 18: 431-436.
  68. Yiangou Y., Facer P., Dyer N., Chan C., Knowles C., Williams N., Anand P. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 2001; 357: 1338-1339.
  69. Chan C., Facer P., Davis J., Smith G., Egerton J., Bountra C, Williams N., Anand P. Sensory fibres expressing capsaicin receptor TRPV1 in patients with rectal hypersensitivity and faecal urgency. Lancet 2003; 361: 385-391.
  70. Matthews P., Aziz Q., Facer P., Davis J., Thompson D., Anand P. Increased capsaicin receptor TRPV1 nerve fibres in the inflamed human oesophagus. Eur J Gastroenterol Hepatol 2004; 16: 897-902.
  71. Femandes E., Femandes M., Keeble J. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 2012; 166: 510-521.
  72. Babbar S., Marier J., Mouksassi M., Beliveau M., Vanhove G., Chanda S., Bley K. Pharmacokinetic analysis of capsaicin after topical administration of a high-concentration capsaicin patch to patients with peripheral neuropathic pain. Ther Drug Monit 2009; 31: 502-510.
  73. Chaiyasit K., Khovidhunkit W., Wittayalertpanya S. Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level. J Med Assoc Thai 2009; 92: 108-113.
  74. Lopez-Carrillo L., Herna’ndez Avila M., Dubrow R. Chili pepper consumption and gastric cancer in Mexico: a case-control study. Am J Epidemiol 1994; 139: 263-271.
  75. Peppin J., Pappagallo M. Capsaicinoids in the treatment of neuropathic pain: a review. Ther Adv Neurol Disord 2014; 7: l: 22-32.
  76. Simone D., Nolano M., Johnson Т., Wendelschafer-Crabb G., Kennedy W. Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J Neurosci 1998; 18: 8947-8959.
  77. LaMotte R., Shain C., Simone D., Tsai E. Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. J Neurophysiol 1991; 66: 190-211.
  78. Koltzenburg M., Lundberg L., Torebjork H. Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain 1992; 51: 207-219.
  79. Kilo S., Schmelz M., Koltzenburg M., Handwerker H. Different patterns of hyperalgesia induced by experimental inflammation in human skin. Brain 1994; 117: 385-396.
  80. Maggi C., Meli A. The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol 1988; 19: 1-43.
  81. Szolcsanyi J. A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J Physiol (Paris) 1977; 73: 251-259.
  82. Jancso G., Kiraly E., Jancso-Gabor A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature 1977; 270: 741-743.
  83. Nolano M., Simone D., Wendelschafer-Crabb G., Johnson Т., Hazen E., Kennedy W. Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain 1999; 81: 135-145.
  84. Mason L., Moore R., Derry S., Edwards J., McQuay H. Systematic review of topical capsaicin for the treatment of chronic pain. BMJ 2004; 328: 991.
  85. Kennedy W., Vanhove G., Lu S., Tobias J., Bley K., Walk D., Wendelschafer-Crabb G., Simone D., Selim M. A randomized, controlled, open-label study of the long-term effects of NGX-4010, a high-concentration capsaicin patch, on epidermal nerve fiber density and sensory function in healthy volunteers. J Pain 2010; 11: 579-587.
  86. Touska F., Marsakova L., Teisinger J., Vlachova V. A «cute» desensitization of TRPV1. Curr Pharm Biotechnol 2011; 12: 122-129.
  87. Tominaga M., Tominaga T. Structure and function of TRPV1. Pflugers Arch 2005; 451: 143-150.
  88. Polydefkis M., Hauer P., Sheth S., Sirdofsky M., Griffin J., McArthur J. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain 2004; 127: 1606-1615.
  89. Malmberg A. Reduced heat sensitivity and epidermal nerve fiber immunostaining following single applications of a high concentration capsaicin patch. Pain 2004; 111: 3: 360-367.



Нажмите для комментария

    Ми на Facebook